Table of Contents
Introduction 05

MAADI Group Quality 06
Specifications 06
Codes and Standards 06
Quality Assurance 06
Warranty 06
Advantages 07
Sustainability 07

Customization 08

Pedestrian Bridge Styles 10
Guardrail Systems 13
Decking Materials 14
Decking Materials - Comparison Charts 16

Projects 18

Offshore Platform Bridge Project - Deep Ocean 20
TD Place Stadium Bridge Project - Ottawa, Ontario 22
Snowmobile Bridge Project - Coaticook, Québec 24
Rio Tinto Alcan Service Bridge Project - Jonquière, Québec 26
Skelton Hydro Electric Bridge Project - Dayton, Maine 28
Equestrian Park Bridge Project - Blainville, Québec 30
Bike Path Bridge Project - Brossard, Québec 32
Kativik Government Bridge Project - Kuujjuaq, Québec 34
All-Terrain Vehicle Bridge Project - Baie d'Urée, Québec 36
Bota Bota Spa sur l'eau Gangways Project - Montréal, Québec 38
Emergency Exit QMD Project - Montréal, Québec 40
Private Trail Bridge Project - Tremblant, Québec 42
St-Martin School Bridge Project - Laval, Québec 44
Port of Québec Gangways Project - Québec City, Québec 46
Bayview Skywalk Bridge Project - San Diego, California 48
Coke Oven Brook Realignment Project - Sydney, Nova Scotia 50
Bayview Skywalk Bridge Project, San Diego, California
MAADI Group engineers have specialized in structural design and build since 2003. Our Professional Engineers are experts in structural design using high-strength aluminum, innovating to maximize efficiency and functionality. Our pedestrian bridges and maritime structures meet both practicality and aesthetics with custom design options. We create distinctive, maintenance-free structures that last for decades by optimizing aluminum’s sustainable benefits.

MAADI Group provides full engineering and technical support and manufacturing services from design through installation to meet your project goals. All MAADI Group structures are designed and manufactured according to American or Canadian building and bridge codes and standards.
MAADI Group Quality

MAADI Group aluminum pedestrian bridges and structures are designed by Professional Engineers experienced in pony truss bridge design and top chord stability criteria, utilizing elastic lateral restraints. We are ISO 9001:2008 certified for quality, using the latest technologies in finite element analysis, CAD and 3D modeling to optimize our structures.

Specifications
MAADI Group engineers assert that design specifications meet all local, regional and national building codes and standards. Welding of our bridges is done by experienced certified aluminum welders according to AWS D1.2/D1.2M:2014 and CSA W47.2-11 standards. Aluminum parts are joined using GMAW welding techniques with welding procedure specifications (WPS), using Aluminum alloy 6061 and filler 5356 in the bridge structures.

Quality Assurance
MAADI Group, Inc. is ISO9001:2008 accredited and certified. Our products are produced to the highest and most rigorous quality standards in our industry.

Warranty
10-Year Limited Warranty on aluminum against material failure, defects and corrosion.

Codes and Standards
All MAADI Group bridges can conform to any of these codes and standards (or to others upon request), and bear the seal of our in-house Professional Registered Engineers:

Canada
- CAN/CSA S157-05 (R2010) Strength Design in Aluminum
- CAN/CSA W47.2-11 (2011) Certification of Companies for Fusion Welding of Aluminum

U.S.
- AASHTO Specifications for Design of Pedestrian Bridges
- AA ADM-1 Aluminum Design Manual, 2015
- AWS D1.2/D1.2M:2014 Structural Welding Code – Aluminum
- AS&D Aluminum Standards and Data

International
Advantages

Aluminum use for pedestrian bridge construction has proven advantages of excellent atmospheric corrosion resistance, durability and high strength-to-weight ratio, compared with competing construction materials.

Pedestrian bridges are long-term infrastructure investments with an expected lifespan of at least 50 years. The recent ‘Total Cost of Ownership’ study (www.maadigroup.com/lang/en/tco) shows that decision-makers should no longer assume that steel is the best option economically when investing in civil engineering structures.

Aluminum’s cost-effective benefits for structures:
- Over its life cycle, aluminum is proven to be 100% maintenance-free – no costly galvanizing or painting
- Resists corrosion due to salt, chemicals or pollution and will not rust, degrade, warp or become brittle over time
- Structural stiffness resists deformation caused by live loads, climate or movement
- High strength-to-weight ratio for construction strength/durability
- Easy to remove graffiti by simply brushing the bare metal
- Natural mill finish aluminum forms its own protective coating
- Easy to install/transport because of the reduced self-weight (60% of equivalent steel)
- Easy to fabricate and extrude into infinite shapes

Sustainability

MAADI Group engineers incorporate sustainable design principles of energy conservation, use of recyclable materials, greater functionality and design flexibility into every structure we design and build. MAADI Group infrastructure enhances environmentally responsible buildings with durable aluminum bridges and structures that are cost-effective to build and use throughout their decades-long life cycle.

Sustainable advantages of aluminum structures:
- 100% reusable and recyclable, with high resale scrap value at the end of their lifespan
- Extruded truss sections use recycled aluminum content
- Fully reusable upon deconstruction without any loss of strength or mechanical properties
- Reduced energy use and reduced pollution during transport due to reduced self-weight (60% of equivalent steel)
- Natural material meets environmental responsibility requirements
- Structures are environmentally compatible with adjacent structures and with natural surroundings

MAADI Group engineers strive to deliver design excellence and the highest production quality for every product. We work closely with our manufacturing and supplier partners to assure consistently maintained product quality standards throughout the design, production and installation processes. All of our structural aluminum designs and calculations bear the seal of our in-house Professional Registered Engineers.
Customization
MAADI Group bridge design offers fully customized options to create a distinctive structure that is best suited for its purpose and integrates with its surroundings by design.
Pedestrian Bridge Styles

Pony Truss Bridge

Spans
Up to 100'-0" – 30.5m

Widths
3'-0" to 10'-0" – 1.0m to 3.0m

Arched Pony Truss Bridge

Spans
Up to 150'-0" – 45.7m

Widths
3'-0" to 12'-0" – 1.0m to 3.7m

Box Truss Bridge

Spans
Up to 175'-0" – 53.4m

Widths
6'-0" to 10'-0" – 1.8m to 3.0m

Bow Truss Bridge

Spans
Up to 175'-0" – 53.4m

Widths
6'-0" to 10'-0" – 1.8m to 3.0m
Modular Pony Truss Bridge

Customization
Weld-free Make-A-Bridge® offers customized options.

Spans
10'-0" to 60'-0" – 3.0m to 18.0m

Widths
3'-0" to 6'-0" – 1.0m to 1.8m

Visit www.makeabridge.com

H-Section Truss Bridge

Spans
Up to 150'-0" – 45.7m

Widths
4'-0" to 12'-0" – 1.2m to 3.7m

Bowstring Truss Bridge

Spans
Up to 100'-0" – 30.5m

Widths
6'-0" to 12'-0" – 1.8m to 3.7m

Bridge Widening Retrofit

Multiple single spans
Up to 100'-0" – 30.5m

Widths
5'-0" to 10'-0" – 1.5m to 3.0m

Cantilever bridge systems create a dedicated and safe foot/bike traffic lane on existing narrow road bridges.
Aluminum Horizontal Railing - Kativik Government Bridge Project, Quaťaq, Québec
Guardrail Systems

Custom guardrail options are available, including integrated handrails and kick plates for added safety and durability. MAADI Group precision guardrail systems enhance practicality and aesthetics, whether for pedestrians, ATVs, golf carts, horses, or maintenance vehicles. All guardrail systems meet American and Canadian bridge codes and standards.

Aluminum Vertical Pickets

Applications
- Bridges, building walkways

Specifications
- Pickets are made of aluminum
- Less than 4” – 100mm between pickets - Building codes
- Less than 6” – 150mm between pickets - Bridge codes

Aluminum Midrail

Applications
- Marina gangways, industrial walkways
- Trail bridges in remote sites

Aluminum Horizontal Railings

Applications
- Pedestrian/bike and light vehicle bridges
- Not intended for buildings

Specifications
- Openings are less than 6” – 150mm between railings - Bridge codes
Decking Materials

Choose bridge/gangway decking material based on how your structure will be used: for an architectural/outdoor application, or for a more industrial application. Woods and extruded aluminum planks are ideal for heavy-duty daily wear in most outdoor environments.

IPE Hardwood Planks

Applications
- Architectural (highly aesthetic)

Specifications
- Minimum 40-year lifespan
- Low maintenance, no treating or sealing required for durability (treating may be required to keep rich, red color)
- Medium grip surface
- Eco-friendly and naturally insect resistant
- Heavy use outdoor applications
- Economical over life of the bridge/structure

Pressure-Treated Pine Wood Planks

Applications
- Architectural

Specifications
- Average 15-year lifespan
- Maintenance required – treat with water repellent every 2 years
- Natural finish requires UV protection – apply a semi-transparent stain or clear sealer
- Medium grip surface
- Standard use outdoor applications
- Most economical initial material cost

Extruded Aluminum Transversal Planks

Applications
- Architectural

Specifications
- Unlimited lifespan with regular cleaning
- Maintenance-free – no treatments or sealers required
- Natural mill finish – no paints or coatings required
- High grip surface
- 100% recyclable and reusable
- Corrosion-free – will not rust
- Economical over life of the bridge/structure
High-grip metal planks are best suited for steeper inclines and industrial or marina applications where a non-slip surface is critical. Custom decking options and dimension specifications are available upon request.

Grip Span Planks

Applications
- Industrial

Specifications
- Optimal grip surface
- Low/no maintenance
- Safety grating planks have serrated edges
- Safety grating has diamond-shaped openings
- Planks have integral side channels
- Made from aluminum alloy

Shur Grip Planks

Applications
- Industrial

Specifications
- High grip surface
- Low/no maintenance
- Safety grating planks have debossed holes, each surrounded by 6 perforated buttons
- Safety grating planks have integral side channels
- Made from aluminum alloy

Bar Grating

Applications
- Industrial

Specifications
- Low grip surface
- Low/no maintenance
- Safety bar gratings are single-unit construction
- Serrated Tru-weld available for extra grip on bearing bars
- Made from aluminum alloy
Decking Materials - Comparison Charts

Maintenance, durability, adherence (non-slip surface), and sustainability should be considered when choosing the most suitable decking material for your project.

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Low</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE Hardwood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durability</th>
<th>Low</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE Hardwood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adherence</td>
<td>Low</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>High</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>IPE Hardwood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sustainability</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE Hardwood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projects
MAADI Group pedestrian and utility/service bridges are versatile and adaptable for a wide variety of uses and environments.

Our Project pages highlight the unlimited possibilities when designing structures in high-strength aluminum. Each structure features our engineering team’s designs, customized to meet specific project needs and integrate with adjacent structures and surroundings. We demonstrate our expertise in aluminum engineering design and build for every commercial, industrial, institutional, and recreational project we undertake.
Offshore Platform Bridge Project
Deep Ocean
Design/build of a special aluminum through-truss style pedestrian bridge

June, 2014

<table>
<thead>
<tr>
<th>Overall span</th>
<th>152'- 0" – 46.3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear width</td>
<td>4'- 0" – 1.2m</td>
</tr>
<tr>
<td>Pedestrian loading</td>
<td>31psf – 1.5kPa</td>
</tr>
<tr>
<td>Vehicular load</td>
<td>N/A</td>
</tr>
<tr>
<td>Bridge self-weight</td>
<td>30,140lb – 13 700kg</td>
</tr>
<tr>
<td>Wind pressure</td>
<td>7.8psf – 375Pa</td>
</tr>
<tr>
<td>Application</td>
<td>Industrial</td>
</tr>
<tr>
<td>Options</td>
<td>Aluminum “Grip Span” decking, aluminum guardrails and kick plates</td>
</tr>
</tbody>
</table>
TD Place Stadium Bridge Project
Ottawa, Ontario
Design/build of an arched aluminum pony truss style pedestrian & light vehicle bridge
April, 2014

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>98'-5" – 30.0m</td>
<td>100psf – 4.8kPa</td>
<td>17,435lb – 7 925kg</td>
<td>Architectural</td>
<td>Ipe hardwood decking, aluminum vertical pickets, handrails and guardrails</td>
</tr>
<tr>
<td>Clear width</td>
<td>Vehicular load</td>
<td>Wind pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'-0" – 1.8m</td>
<td>2 kips – 9kN</td>
<td>8.6psf – 410Pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Snowmobile Bridge Project
Coaticook, Québec
Design/build of an arched aluminum pony truss style pedestrian & light vehicle bridge
December, 2013

Overall span: 95'-1¼" – 29.0m
Clear width: 6'-0" – 1.8m
Pedestrian loading: 84psf – 4.0kPa
Vehicular load: 2 kips – 9kN
Bridge self-weight: 16,808lb – 7 640kg
Wind pressure: 7.8psf – 375Pa
Application: Architectural
Options: Ipe hardwood decking and kick plates, aluminum horizontal railings
Rio Tinto Alcan Service Bridge Project
Jonquière, Québec
Design/build of two special-access aluminum service/utility bridges

December, 2012

Overall span	65'-7" – 20.0m
Clear width	3'-6½" – 1.1m
Pedestrian loading	100psf – 4.8kPa
Vehicular load	N/A
Bridge self-weight	3,835lb – 1,720kg
Wind pressure	N/A
Application	Industrial
Options	Removable aluminum midrail and kick plates, aluminum extruded decking
Skelton Hydro Electric Bridge Project
Dayton, Maine
<table>
<thead>
<tr>
<th>Overall span</th>
<th>22'-5" – 6.8m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear width</td>
<td>4'-0" – 1.2m</td>
</tr>
<tr>
<td>Pedestrian loading</td>
<td>100psf – 4.8kPa</td>
</tr>
<tr>
<td>Vehicular load</td>
<td>N/A</td>
</tr>
<tr>
<td>Bridge self-weight</td>
<td>1,285lb – 583kg</td>
</tr>
<tr>
<td>Wind pressure</td>
<td>8.3psf – 400Pa</td>
</tr>
<tr>
<td>Application</td>
<td>Industrial</td>
</tr>
<tr>
<td>Options</td>
<td>Aluminum extruded decking, kick plates and midrail</td>
</tr>
</tbody>
</table>

Design/build of an aluminum modular Make-A-Bridge®

November, 2012
Equestrian Park Bridge Project
Blainville, Québec
Design/build of an arched aluminum pony truss style pedestrian/horse bridge
October, 2012

Overall span
59'-0" – 18.0m

Clear width
10'-0" – 3.0m

Pedestrian loading
85psf – 4.0kPa

Vehicular load
7.7 kips – 34kN

Bridge self-weight
15,211lb – 6 900kg

Wind pressure
8.3psf – 400Pa

Application
Park/Recreational

Options
Ipe hardwood decking and kick plates, aluminum horizontal railings

Watch the video
Bike Path Bridge Project
Brossard, Québec
Design/build of an aluminum pony truss style bike & pedestrian bridge
March, 2012

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>144’-4¾” – 44.0m</td>
<td>100psf – 4.8kPa</td>
<td>42,873lb – 19 447kg</td>
<td>Recreational</td>
<td>Pressure-treated Southern yellow pine wood decking and kick plates, aluminum horizontal railings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clear width</th>
<th>Vehicular load</th>
<th>Wind pressure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12'-0" – 3.7m</td>
<td>13 kips – 58kN</td>
<td>8.3psf – 400Pa</td>
<td></td>
</tr>
</tbody>
</table>
Kativik Government Bridge Project
Quaqtaq, Québec
Design/build of two aluminum pony truss style pedestrian bridges

June, 2011

Overall span
60'-0" & 98'-5½" – 18.0m & 30.0m

Clear width
6'-0" – 1.8m

Pedestrian loading
85psf – 4.0kPa

Vehicular load
N/A

Bridge self-weight
6,613lb & 13,558lb – 3,000kg & 6,150kg

Wind pressure
12.5psf – 600Pa

Application
Government

Options
Aluminum “Shur Grip” decking and horizontal railings
All-Terrain Vehicle Bridge Project
Baie d’Urfé, Québec
Design/build of two aluminum pony truss style ATV & pedestrian bridges

November, 2010

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>29'-10¼” & 25'-2½” – 9.1m & 7.6m</td>
<td>100psf – 4.8kPa</td>
<td>3,705lb & 3,079lb – 1 706kg & 1 400kg</td>
<td>Recreational</td>
</tr>
<tr>
<td>Clear width</td>
<td>Vehicular load</td>
<td>Wind pressure</td>
<td>Options</td>
</tr>
<tr>
<td>6'-5¼” – 1.9m</td>
<td>11.4 kips – 51kN</td>
<td>12.5psf – 600Pa</td>
<td>Ipe hardwood decking and kick plates, aluminum horizontal railings</td>
</tr>
</tbody>
</table>
Bota Bota Spa sur l’eau
Gangways Project
Montréal, Québec
Design/build of seven aluminum modular Make-A-Bridge® & platform
August, 2010

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>45'-0", 20'-0" & 12'-0" – 13.7m, 6.1m & 3.7m</td>
<td>100psf – 4.8kPa</td>
<td>2,866lb, 1,100lb & 606 lb – 300kg, 500kg & 275kg</td>
<td>Architectural/Maritime</td>
<td>Aluminum extruded decking and kick plates, integrated LED lighting</td>
</tr>
<tr>
<td>Clear width</td>
<td>Vehicular load</td>
<td>Wind pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'-0" & 4'-0" – 1.8m & 1.2m</td>
<td>N/A</td>
<td>12.5psf – 600Pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Emergency Exit QMD Project
Montréal, Québec
Design/build of an aluminum modular Make-A-Bridge® & stairs

April, 2009

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>21'-0" – 6.4m</td>
<td>100psf – 4.8kPa</td>
<td>1,207lb – 547kg</td>
<td>Emergency Exit</td>
<td>Fiberglass decking, lexan guardrails</td>
</tr>
<tr>
<td>Clear width</td>
<td>Vehicular load</td>
<td>Wind pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-9¾" – 1.2m</td>
<td>N/A</td>
<td>12.5psf – 600Pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Private Trail Bridge Project
Tremblant, Québec
Design/build of an aluminum arched pony truss style bridge for ATVs & pedestrians

December, 2008

<table>
<thead>
<tr>
<th></th>
<th>Overall span</th>
<th>Clear width</th>
<th>Pedestrian loading</th>
<th>Vehicular load</th>
<th>Bridge self-weight</th>
<th>Wind pressure</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall span</td>
<td>55'-0” – 16.7m</td>
<td>5'-0” – 1.5m</td>
<td>85psf – 4.0kPa</td>
<td>11 kips – 49kN</td>
<td>5,500lb – 2 500kg</td>
<td>12.5psf – 600Pa</td>
<td>Park/Recreational</td>
<td>Pressure-treated Southern yellow pine wood decking and aluminum horizontal railings</td>
</tr>
<tr>
<td>Clear width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian loading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicular load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge self-weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Projects 43
St-Martin School Bridge Project
Laval, Québec
Design/build of an aluminum bowstring truss style pedestrian bridge & guardrails

October, 2008

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>30'-9½” – 9.4m</td>
<td>100psf – 4.8kPa</td>
<td>8,580lb – 3 900kg</td>
<td>Architectural</td>
<td>Polymer decking, aluminum vertical pickets and guardrails</td>
</tr>
<tr>
<td>Clear width</td>
<td>Vehicular load</td>
<td>Wind pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8'-11½” – 2.7m</td>
<td>N/A</td>
<td>12.5psf – 600Pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Port of Québec Gangways Project
Québec City, Québec
Design of two aluminum pony truss style gangways

July, 2008

<table>
<thead>
<tr>
<th>Overall span</th>
<th>72'-2" – 22.0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear width</td>
<td>5'-7" – 1.7m</td>
</tr>
<tr>
<td>Pedestrian loading</td>
<td>100psf – 4.8kPa</td>
</tr>
<tr>
<td>Vehicular load</td>
<td>N/A</td>
</tr>
<tr>
<td>Bridge self-weight</td>
<td>6,600lb – 3,000kg</td>
</tr>
<tr>
<td>Wind pressure</td>
<td>12.6psf – 604Pa</td>
</tr>
<tr>
<td>Application</td>
<td>Architectural/Maritime</td>
</tr>
<tr>
<td>Options</td>
<td>Aluminum handrails, midrail, horizontal railings, and swan necks</td>
</tr>
</tbody>
</table>
Bayview Skywalk Bridge Project
San Diego, California
Design of an aluminum pony truss style walkway

December, 2007

<table>
<thead>
<tr>
<th>Overall span</th>
<th>Pedestrian loading</th>
<th>Bridge self-weight</th>
<th>Application</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>83'3(\frac{7}{8})" – 25.4m</td>
<td>93psf – 4.5kPa</td>
<td>8,910lb - 4 050kg</td>
<td>Architectural</td>
<td>Aluminum decking and glass panel guardrail</td>
</tr>
<tr>
<td>Clear width</td>
<td>Vehicular load</td>
<td>Wind pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'-0" – 1.8m</td>
<td>N/A</td>
<td>35psf – 1.7kPa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coke Oven Brook Realignment Project
Sydney, Nova Scotia
Design/build of an aluminum pony truss style bridge for ATVs & pedestrians

November, 2006

<table>
<thead>
<tr>
<th>Overall span</th>
<th>68'-10½" – 21.0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear width</td>
<td>6'-0" – 1.8m</td>
</tr>
<tr>
<td>Pedestrian loading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85psf – 4.0kPa</td>
</tr>
<tr>
<td>Vehicular load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 kips – 6.7kN (four-wheeled vehicle)</td>
</tr>
<tr>
<td>Bridge self-weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,600lb – 3 000kg</td>
</tr>
<tr>
<td>Wind pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11psf – 535Pa</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recreational</td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemlock 2” – 48mm timber decking and kick plate and aluminum wire mesh guardrail</td>
</tr>
</tbody>
</table>

Design/build of an aluminum pony truss style bridge for ATVs & pedestrians

November, 2006